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Abstract

The purpose of this work is the formulation of models for the dynamics of continua with microstructure and material
inhomogeneity. In particular, attention is focused here on the balance relations and configurational fields for such
continua obtained via invariance. To this end, the approach of Capriz (Capriz, G., 1989. Springer Tracts in Natural
Philosophy, vol. 37) to the formulation of continua with microstructure as based upon the invariance of the internal
power with respect to superimposed rigid-body rotations is extended to one based upon the Euclidean frame-indif-
ference of the total energy balance. This is then combined with an extension of the work of Gurtin (Gurtin, M.E., 1995.
Arch. Rat. Mech. Anal. 131, 67-100) on the formulation of static configurational fields to the case of dynamic and
microstructure. In this way, one obtains in particular the dependence of the configurational momentum density,
configurational or Eshelby stress, as well as the internal and external configurational momentum supply rate, or
configurational force, densities, on the corresponding microstructural fields. These can then be used to derive the forms
of the balance relations relevant to the case that the continuum contains defects at which the microstructure is dis-
continuous. As an application of the formulation, this is done here for the case of a continuum with microstructure
containing a single defect. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In order to apply models for materials with microstructure (e.g., multiphase materials, granular or
damaged materials, liquid crystals, polycrystals) to the description of the behaviour of actual such mate-
rials, one must in general account as well for the fact that these are fundamentally heterogeneous in nature,
i.e., contain various kinds of material inhomogeneities such as point defects, dislocations, shear bands,

E-mail address: bob.svendsen@mech.mb.uni-dortmund.de (B. Svendsen).
! Corresponding address: Department of Mechanical Engineering, Chair of Mechanics, University of Dortmund, Leonhard-Euler-
Street 5, D-44221 Dortmund, Germany.

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00081-0



1184 B. Svendsen | International Journal of Solids and Structures 38 (2001) 1183-1200

microcracks, and so on. Attempts to incorporate this fact into the continuum modeling of such materials
have led to a number of approaches and viewpoints on the issue, depending in part on the nature of the
structure or heterogeneity in question. In the context of field-based approaches, for example, the Ozeen—
Zocher—Frank theory forms the basis of a number of comprehensive models for the equilibrium behaviour
of nematic liquid crystals containing point and line defects (e.g., Brinkman and Cladis, 1982; Kléman, 1983;
Virga, 1994). Such models have been recently extended, on the basis of the Ericksen—Leslie theory, to the
dynamic case by Cermelli and Fried (1999), accounting in particular for the effect of microstructural in-
homogeneity on the general behaviour via the approach of Gurtin (1995) to configurational forces. A quite
different approach, finding application in the realm of polycrystals containing inclusions, microcracks, and
so on, is that offered by homogenization and self-consistent methods (e.g., Suquet, 1998). Here, both mi-
crostructure (e.g., texture, different phases, twins) and defects (e.g., microcracks) fall under the rubic of
“material inhomogeneity” in the form of a dependence of material properties (e.g., elasticity or compliance
tensors) on material element. As implied by the original work of Eshelby (1951, 1970), a field-based de-
scription of such material inhomogeneity, and the corresponding forms taken by configurational fields such
as the Eshelby stress, depend crucially on the type of microstructure in question. One purpose of the current
work is the formulation of such configurational fields including contributions from a general class of mi-
crostructure, including such cases as phase transitions, granular and damaged materials, as well as liquid
crystals and other materials such as polycrystals possessing an orientation structure as characterized, e.g.,
by a director field. In particular, this is done here both for the classical case in which the inhomogeneities
are smoothly distributed in the material, as well as for the case of point defects.

The formulation to this end is carried out in a dynamical setting via an extension of the approach of
Capriz (1989) for continua with microstructure as based on the invariance of the internal power with re-
spect to superimposed rigid-body rotations to the one based on the invariance of the total energy balance
with respect to the change ? of observer. Such an approach has a long tradition; in the realm of pure
continuum mechanics, the insight that such invariance of certain ““action integrals” can be used to derive
mechanical balance relations goes back at least to the work of the Cosserat brothers (Cosserat and
Cosserat, 1909; also see, e.g., Truesdell and Toupin, 1960) on rods and shells, and was extended to continua
with general microstructure by Toupin (1964) in his theory of oriented hyperelastic materials (see, e.g.,
Truesdell and Noll, 1992, Section 123). The extension of this idea to the thermodynamical or thermome-
chanical context was achieved by Green and Rivlin (1964), who used the invariance of the total energy
balance with respect to superimposed rigid-body motions to derive the mass, linear momentum, and an-
gular momentum, balances (see, e¢.g., Marsden and Hughes, 1983, Chapter 2). This approach has been
substantially rigourized, extended and generalized by Silhavy (see, e.g., Silhavy, 1997, Chapter 6) for
general thermodynamic systems via the transformation properties of working and heating with respect to
change of observer. Invariance of the total energy balance with respect to change of observer was used by
Capriz et al. (1982) to derive balance relations in the case of affine microstructure, by Pitteri (1990) in the
context of a statistical mechanical approach to models for microstructure, and most recently by Capriz and
Virga (1994) in the context of continua with general microstructure. Central to this approach are (1), the
forms taken by the total energy density, total energy flux density, and total energy (external) supply rate
density, as well as (2), the transformation properties of the fields in question with respect to the change of

2 Note that the balance relations obtained via invariance are independent of whether the invariance involved is with respect to
superimposed rigid-body motions or with respect to change of observer (i.e., Euclidean frame-indifference). By contrast, in the context
of constitutive relations i.e., relations between the fields of interest, Euclidean frame-indifference and invariance with respect to
superimposed rigid-body motions are never equivalent (see, e.g., Svendsen and Bertram, 1999). Indeed, in this context, the latter
requirement is stronger, i.e., equivalent to those of Euclidean frame-indifference plus form-invariance, which together constitute what is
commonly known as material frame-indifference.
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Euclidean observer. From the point of view of the treatment of observers and the invariance of the energy
balance with respect to change of these, the current approach represents in part an extension to the general
microstructure of that found in Capriz et al. (1982) for affine microstructure. Comparison of the current
approach with the more recent work of Capriz and Virga (1994) on materials with microstructure shows
that basic differences arise in (1), the modeling of the microstructural momentum balance, (2), the trans-
formation properties of certain microfields, and (3), the treatment of the kinetic energy and inertia of the
microstructure. Except for the latter aspect, however, the resulting balance relations for the microstructure
are in essence the same.

The connection with material inhomogeneity and possible defect structure is achieved via a combination
of this approach to microstructure with an extension of the recent balance relation, dissipation-based
approach of Gurtin (1995) to the formulation of (static) configurational forces to dynamics, in some ways
analogous to that of Cermelli and Fried (1997). In particular, such an approach to configurational forces
extends earlier variational- or virtual-power-based formulations of such forces (e.g., Maugin et al., 1992;
Maugin, 1993) to a non-equilibrium thermodynamic context. Such a combined approach has been used
recently by Cermelli and Fried (1999) to formulate evolution equations and configurational fields for de-
fective nematic fluids. Similarly, Mariano (2000) has combined the approach of Capriz (1989) to micro-
structure with that of Gurtin (1995) to configurational forces and applied the resulting formulation * in
particular to two-phase continua and continua with singular surfaces.

To begin, the kinematics of a continuum with microstructure is briefly summarized (Section 2). With
this in hand, we turn then to the formulation of balances relations for a continuum with microstruc-
ture containing no defects (Section 3) on the basis of the Euclidean frame-indifference of the total energy
balance for such a continuum. In preparation for the case of a continuum with microstruture and defects,
we derive next the forms taken by the configurational fields for a continuum with microstructure
and smoothly varying material inhomogeneity (Section 4). After summarizing basic results from the dis-
sipation principle (Section 5) consistent with the current approach for completeness, we turn finally
to application of the basic results to the case of a continuum with microstructure and point defects (Section
6). Before we begin, a word on notation. If %" and Z represent linear spaces, let Lin(#", %) represent
the set of all linear mappings from %" to Z. If in addition these are inner product spaces, the corre-
sponding inner products induce the transpose A" € Lin(Z, #") of any A € Lin(#", %), as well as the in-
ner product A-B:= tr, (A'B) = try(AB") on Lin(#", %) for all A,B € Lin(#",%). In this case, we
can also identify the symmetric sym(A) := (A + A") and skew-symmetric skw(A) := 1 (A — A") parts of
any A € Lin(#",#"); let Sym(# ", #") and Skw(#",#"), respectively, represent the corresponding sub-
spaces of Lin(#",#"). The principle linear space in this work is of course that of three-dimensional Eu-
clidean vector space ¥". Other mathematical notations and concepts will be introduced as needed in the
sequel.

2. Kinematics
Let E represent a three-dimensional Euclidean point space and B C E an arbitrary reference configu-

ration of some material body. The motion of the material body with respect to B and E takes as usual the
form

E:IxB—E|(t,b)—p=~¢&(t,b) (2.1)

3 I thank the editors of this special issue for drawing my attention to the work of Capriz and Virga (1994) and Mariano (2000).
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over a time interval [, with &, = &(¢,-) : B — E alocal difftomorphism for all ¢ € 7, and &, := &(-,b) : [ — E,
a smooth curve in E for all b € B. Basic kinematic quantities of interest obtained from Eq. (2.1) include the
material velocity

E:IXxB—7 (2.2)
and the deformation gradient
F:=V¢:IxB— Lin (v,7). (2.3)

As usual, we have the split

FF' = (VO (V)™ = (VO(VE) =D+ W :IxB— Lin(+',7) 2

of the velocity gradient (i.e., expressed as a time-dependent field on B) into its symmetric D := sym(F F)
and skew-symmetric W := skw(FF™") parts.

As discussed in Section 1, continua with microstructure, e.g., granular materials, or liquid crystals, are of
interest in this work. Field models for such materials rely on an idealization of the “kinematics” of the
microstructure in the form of, in the referential context, a time-dependent field on B, e.g., the Cosserat
rotation field, or the director field for uniaxial liquid crystals. From the mathematical point of view, a
formulation sufficiently general to encompass such standard models is obtained when this field is assumed
to take values in a submanifold * ¢ of some finite-dimensional inner product space # . Let 1 : 4 — W of%
represent the smooth inclusion of ¢ into #, and n : #~ — % the corresponding projection of #~ onto ¥,
such that m o1 = 14 holds. To simplify the formulation to follow, it is useful to work with the form

c:IxB—W|(t,b)—a=qg(tb) (2.5)

of the structure field included into #; in terms of ¢, the actual structure field ° is given by no¢: [ x B — %.
Although not important for the formulation of the balance relations, the distinction between ¢ and mwog
becomes so for the constitutive relations, which depend directly on m o g, not ¢ (see Section 5). Likewise,
they depend in general directly on the corresponding (induced) projections of the kinematic fields
Ve:IxB—Lin(¥',#),5:1xB—#,and Vi : I x B— Lin(?",#") associated with ¢ onto the corre-
sponding tensor bundles of .

Turning next to Euclidean observers, these are characterized as usual by the fact that they measure the
same time lapses and spatial distances between events in classical spacetime. Because of this, the motion

Ll x E— E|(t,p)—p = At,p) (2.6)
of an unprimed Euclidean observer with respect to a primed one represents a Euclidean isometry at each

tel, ie, A :=Alt,-): E— E is an affine isometry for all 7 € I. Further, 4, := A(-,p) € C*(I,E) Vp € E.
Being an affine isometry for all # € I, A can be expressed in the form

At,p) = At,0) + O(t)(p—o0) Vtel and Vp,0 € E, (2.7)
with
Q:1— Rot(V,7)|t— (VA)(t,0) =: Q1) (2.8)

4 For example, in the case of uniaxial nematic liquid crystals, % could be the unit sphere $2, a smooth compact submanifold of three-
dimensional Euclidean vector space ¥~ = ¥%. In this case, we have 1(e) = e for all e € S?, and n(a) = a/|a| for all non-zero a € ¥".

5 It is the projected form 7 o ¢ of ¢ which corresponds directly to the generic structure field v of Capriz (1989). On the other hand,
the current approach is formally simpler than his in the sense that his v takes values on a general finite-dimensional manifold .# which
is not necessarily a submanifold of some linear space. Nevertheless, all special cases considered by him can also formulated as special
cases of the current, formally simpler framework.
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corresponding rotation of 4 (independent of o € E). For simplicity, we assume without loss of (physical)
generality in what follows that Q(0) = 1.

Let t be any time-dependent ¥ -tensor field on B with respect to the unprimed observer, and 7' its
counterpart with respect to the primed one. Central to the formulation of the Euclidean frame-indifference
of tensor fields and other quantities in this work is the tensor field

At(b) := {17 —1}(0,b) (2.9)

on B which represents the deviation of 7 from being Euclidean frame-indifferent at (the arbitrary time)
t = 0, with "7’ the “pull-back™ of 7’ to the unprimed observer via 1. Take for example the material velocity
¢ and its gradient V¢. The usual transformation

&=208=0(—0)+ (2.10)
of ¢ from Eq. (2.7) with (10 &)(¢,b) := A(¢, (2, b)) induces via space and time differentiation those
&= 0(r,08) + 4, + 0F, (2.11)

VE = Q(VE) + Q(VE),
for é and Vé, respectively, with

r(p) :=p-—o, (2.12)
the position vector of p = £(¢,b) € E relative to o € E. In terms of Eq. (2.9), Eq. (2.11) takes the forms
Aé(b) = {QTE — £}(0,b) = Qr,(£(0,b)) + ¢, (2.13a,b)

A(VE)(D) = {Q"(VE) — VEN0,b) = (VE)(0,b),

via Eq. (2.12), with © := 0(0) € Skw(7",7") and t := /,(0) € ¥~ (recall that Q(0) = 1). As such, we have
V(AS)(b) = A(VE)(b) = R(VE)(0,b).

Next, we turn to the transformation properties of the fields representing the kinematics of the micro-
structure in the formulation. Such transformation properties are determined in part by the physical in-
terpretation of this kinematic field. This issue has been discussed at length in Capriz (1989) for various
kinds of microstructure; here, attention is restricted to the class of microstructure for which the kinematic
field ¢ is considered to be Euclidean frame-indifferent, something applying to all special cases of interest
(e.g., the director field for uniaxial nematic liquid crystals). From this point of view, ¢, which is sometimes
interpreted as a “‘micro-displacement,” can be contrasted with the standard displacement field, which is not
Euclidean frame-indifferent. Indeed, from the point of view of Euclidean frame-indifference, ¢ is more akin
to, e.g., F. In any case, on this basis, the observer transformation (2.7) induces that

5 =10.9) (2.14)

of ¢ via the left action ¢ : Rot(¥",7") x #" — #" of Rot(¥",7") on # . Consequently, Ag(b) = 0 follows
from Eq. (2.9). In turn, Eq. (2.14) induces the transformation relations
Ag(b) = ‘%G()(b) Qa

A(VE)(b) = (Vtg, ) (b) 2 (2.15a,b)

for ¢ and Vg, respectively, which can be compared to Eq. (2.13a,b) for the material velocity ¢ and its
gradient V¢&. Here, ¢, :=¢(0, ), o/, := o/ og, and

A (5) 1= Dyl, € Lin(Skw(7", "), #") (2.16)
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represents the action of the Lie algebra Skw(7",7") of Rot(#",#") on #  induced by that ¢ of
Rot(77,77) on #°, Di{, being the Fréchet derivative of £, := £(-, ) : Rot (¥7,7") — #" at the identity 1 €
Rot(7", 7). Further, the notation (V.Z,,)° has been introduced for the linear transformation (V.«Z,,)*(b) €
Lin(Skw (77,7"),Lin(7#", #")) induced by (V. )(b) € Lin(¥", Lin(Skw(7",7"), #")). In addition, that
o/ (4) for Di¢, reflects the formal correspondence of this mapping with the “infinitesimal generator”
mapping © introduced by Capriz (1989, Section 3) in this context.

3. Euclidean frame-indifference and balance relations

The formulation of the balance relations for a material with microstructure to follow is caried out in a
referential setting. As such, all time-dependent fields to follow will be the ones on B unless otherwise in-
dicated. For simplicity, attention is restricted here to thermomechanical processes that are smooth in time.
In this sense, the formulation of the total energy balance pursued here is consistent with, e.g., the more
general thermomechanical history-based approach of Silhavy (1997, Chapter 6). Further, assume for the
moment that all fields of interest on B are smooth, i.e., that B contains no singular points, lines or surfaces,
i.e., defects.

As already discussed briefly in Section 1, the approach being pursued here to the formulation of balance
relations for materials with microstructure is based on the invariance of the total energy balance with
respect to Euclidean observer. We begin then with the formulation of this relation. To this end, let ’

/h-n:1—>R (3.1)
P
represent the total energy flux, and
/s I - R (3.2)
P

the total energy supply rate, to the material from its environment (i.e., external) during its motion ¢ in £
with respect to any P C B. As usual, A represents the total energy flux density, and s the corresponding
supply rate density. Combining Egs. (3.1) and (3.2) with the total energy 3

/Pe;1—>R (3.3)

of the system yields the quantity

é”(P)::;—/@Plrn—/})s:/])é—divh—s (3.4)

measuring the total energy balance of, or in, the system. In particular, the total energy of the system is
balanced when &(P) vanishes for all P C B.

© To be precise, Capriz (1989, Section 3) defined this mapping on the axial vectors of the elements of Skw(7", 7).

7 We leave the volume dv and surface da measures out of the corresponding integral notations in this work for simplicity. In
addition, the unit vector field » normal to boundaries of three-dimensional regions is as usual assumed to be outwardly directed unless
otherwise indicated.

8 As discussed by Silhavy (1997, Section 5.3), in the context of the energy balance, the existence of Jpe, and so e, is based upon the
so-called accessibility assumption, i.e., that any two thermomechanical states of the material can be connected by some process.
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The formulation of the invariance of &(P) as given in Eq. (3.4) with respect to change of observer is
based on the decompositions

e = g¢ + ¢k,
h=—q+1,
s=r+m, (3.5)

of the densities e, & and s into their Euclidean frame-indifferent and observer-dependent parts. In partic-
ular, the Euclidean frame-indifferent or “internal” parts of these, i.e., ¢, ¢ and r, represent as usual the
internal energy, heat flux, and internal energy supply rate, densities, respectively, with ¢ the mass density.
The observer-dependent parts gk, I and m represent the kinetic energy, mechanical energy flux, and me-
chanical external supply rate, densities, respectively. Being Euclidean frame-indifferent, the transformation
relations

Ao =0, Ae =0, Ag =0, Ar=0 (3.6a—d)
follow via Eq. (2.9) for ¢, ¢, ¢, and r, respectively. In turn, these induce those
Ae = oAk, Ah = Al As = Am (3.7)

for total energy, total energy flux, and total energy external supply rate, density, respectively.

Being of a kinematic or mechanical nature, the class of microstructure under consideration here con-
tributes to the specific kinetic energy k, the total mechanical energy flux density /, and corresponding ex-
ternal supply rate density m of the system. Accordingly, we have the generalized forms

k=¢C- S+,
I=P'é+3"g, (3.8a—d)
m=b-C+p-¢

for k, k, I and m, respectively. Here, é represents the continuum specific momentum, p that of the mi-
crostructure, P the first Piola-Kirchhoff tress, X the microstructural stress or momentum flux, b the con-
tinuum momentum external supply rate density, f the microstructural momentum external supply rate
density, and k, the contribution to k from the microstructure, i.e., from ¢ and ¢. The form (3.8b) for £, in
particular that k, = ji- & for k,, generalizes the “Lagrangian” approach to the formulation of k considered
by Capriz (1989, Section 7) and Capriz and Virga (1994). In the case of the ubiquitous quadratic form
ky(c,8) = %@ - O(g)¢ for k, for example, ji takes the form j = ©¢ + %@(;, the specific microinertia tensor @
being as usual symmetric and positive-definite.
Now, on the basis of Egs. (3.5) and (3.8a-d), &(P) as given in Eq. (3.4) reduces to

co@(P):/Q8+/ q.n—/r+/ck+z~é+n~¢—P~vé—z.v¢ (3.9)
P ap P P
in terms of the fields
c:=9, (3.10a)
7:=of —divP — b, (3.10b)

7= ot — divX — B, (3.10c)
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on B, representing production-like quantities for mass, continuum momentum, and microstructural °
momentum, respectively. Together with Eq. (3.6a—d), then, the transformation relations

AP =0, AX =0 (3.11a,b)
for P and X, as well as those '°
Az =0, An =0 (3.12a,b)

for the internal supply rate densities induce in turn the transformation relation

AE(P) = (°6")(P) — &(P)
= / %CoAé A&+ co Mk + (20 + cody) - AE+ / o - AG — Py - A(VE) — Xy - A(VE) (3.13)
P P

for &(P) via Egs. (3.8a) and (3.9) with respect to any P C B. Note that Eq. (3.6a) implies Ac =0 via
Eq. (3.10a) and the Euclidean frame-indifference of the material time derivative. Consequently, &(P) will
be Euclidean frame-indifferent, or independent of Euclidean observer, iff A§(P) vanishes. Note that this
condition generalizes similar considerations based on the invariance of the internal power worked with by
Capriz (1989, Section 9) and Segev (1994) to the context of total energy balance (see also Capriz and Virga
(1994), in this regard).

Of all the transformations appearing in Eq. (3.13), only that Ak, for the contribution of the micro-
structure to the specific kinetic energy is yet to be determined. To this end, assume that the form (g, ) of
the dependence of k; on ¢ and ¢ is observer-invariant. In this case,

{27k (6, )] o = K (50, G0 + AG) = k(50,60 + AS), (3.14)
and so
Aks :ks(g()>¢0+A¢) _ks(QOaé()) (315)

follow from Egs. (2.9), (2.14) and Q(0) = 1. So, as long as k(+, -) is continuous in its second argument, Ak
vanishes when A¢ does. In particular, this can be verified for special cases, e.g., for the quadratic form
ks = %@ - @(g)¢. Since A¢ is not zero in general (i.e., from Eq. (2.15a)), Eq. (3.15) implies that £; is in general
not Euclidean frame-indifferent.

Now, Eq. (3.13) clearly holds for all Euclidean observer transformations. Consequently, &(P) will be
observer-invariant if and only if Eq. (3.13) vanishes for all possible such transformations. In particular,
consider the special observer transformation of a pure translation, i.e., 2 = 0. Then,

Aé=t, AV =0,

3.16
Aé =0, A(VE) =0 (3.16)
follow from Egs. (2.13a,b) and (2.15a,b), leading in turn to the reduced form
1 .
Ag(P):—(t-t)/c0+t-/zo+cofo (3.17)
2 P P

® The microstructural internal momentum supply rate density z appearing in Eq. (3.10c) corresponds to the field —¢ in the approach
Capriz (1989, Section 8) and that of Capriz and Virga (1994) when we model gj via a “Lagrangian” form for this quantity in terms of
the kinetic (co)energy.

19.0On the basis of Egs. (3.6a), (3.10b), and (3.11a), the assumption (3.12a) is equivalent to the standard result oAb = Ab (e.g.,
Marsden and Hughes, 1983; see also Silhavy, 1997, Chapter 6). Similarly, Eq. (3.12b) is equivalent to gAjt = AB. Note that this latter
transformation is qualitatively different from that for the external supply rate density formulated by Capriz et al. (1982) for affine
microstructure with the help of mass-point considerations, and from that of Capriz and Virga, who assume Af = 0.
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of Eq. (3.13) via Eq. (3.15) and the assumed continuity of (-, ) in its second argument. This last result
represents a polynomial in #. For this polynomial to vanish for all #, the corresponding coefficients must
vanish identically, yielding

/00:0:>c:Q:0 (3.18)
P
via Eq. (3.10a), as well as
/z0:0=>z:()5—divP—b:O (3.19a, b)
P

from Eq. (3.10b). The second form of these last two expressions results from the fact that ¢ = 0 is physically
arbitrary, as well as the assumed continuity of the integrands. On account of Egs. (3.18) and (3.19a,b), then,
Eq. (3.13) reduces to

AE(P) =R - /P ALy — PoFy — (Vo)™ 2 (3.20)

via the transformation relations (2.13a,b) and (2.15a,b). Since the first and third terms appearing in the
integrand of Eq. (3.20) take values in Skw(¥",7"), A&(P) as given by Eq. (3.20) vanishes for all
Q e Skw(v",7") iff

skw(PF") = o/In — (V.o/)>' X (3.21)

holds identically. This represents in the current context the important result '' obtained by Capriz (1989,
Eq. (9.4)) on the basis of the invariance of the internal power with respect to superimposed rigid-body
rotations. As noted by him, the combination of Eq. (3.21) with the evolution relation (3.10¢) for the mi-
crostructural specific momentum yields the “standard” local form

0./ jt = skw(PF") + div(/]X) + /1 B (3.22)

of moment of momentum balance taking values in Skw(7",7") in which skw(PF") appears as a source
term. Finally, Eq. (3.10c), as well as the results (3.18) and (3.19), lead to the reduced form

é(P):/Qé+divq—r+n-¢—P~Vf—2-V¢ (3.23)
P
for &(¢) from Eq. (3.9) via the divergence theorem. Assuming then there exists at least one observer with
respect to which &(P) in fact vanishes, it does so with respect to all, and yields the localized form

0 =P -Vé+X-Ve—n-&—divg+r (3.24)

of total energy balance via the assumed continuity of the integrand. Incorporating Eq. (3.21) into Eq. (3.24)
yields the alternative form

0¢=sym(PF') D+ X-V(e— A W)+ A 2- VW —n- (6 — A W) —divg +r (3.25)

of reduced local energy balance via Eq. (2.4) in terms of the “Jaumann” objective time derivative
¢ — W of ¢. In particular, since VW is Euclidean frame-indifferent, Eq. (3.25) shows that the energy
balance is indeed so.

' Also obtained by Capriz and Virga (1994).
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4. Configurational fields and microstructure

Now, we turn to the formulation of the configurational fields for a continuum with microstructure of the
type considered in the last section. To this end, we follow Gurtin (1995) and Cermelli and Fried (1997) in
dealing first with the case in which the material inhomogeneity is smoothly varying, i.e., no defects. The
formulation of these fields is based on the notion of an evolving control region in B, i.e., one into, or out of,
which elements of the material body, may flow during some process. Let R C B represent this set at some
arbitrary time (e.g., ¢t = 0). The evolution of this region due to mass flux into or out of it in can be rep-
resented with the help of a time-dependent mapping

k:IxXR— B (4.1)
of R into B formally (but not physically) analogous to the motion (2.1) of B in E. In this case,

Ok IXR—E (4.2)
represents the motion of the evolving control region in question with respect to E. Let

U OK =K (4.3)

represent the specific mass flux corresponding to x. In particular, Uw|ah-,[1e] - my,,g) TEpresents the rate at time ¢

at which mass enters or leaves the control region at its boundary Ok, [R] with unit normal mg,,g.
To formulate configurational fields in this framework, consider first the generic balance relation

%’(K):ﬁ/xn 6K¢K~n7/xa:0 (4.4)

for mass, continuum momentum, microstructural momentum, or entropy '? relative to k. Here, we use the
notation

([w)o= [ v (4.5)

for volume integrals defined on x; boundary integrals are defined similarly. In Eq. (4.4) appear, the ref-
erential density i, the internal supply or “production” rate density 7, and the external supply rate density o,
associated with the balance in question. Further,

G =+ (4.6)

represents the form of the corresponding flux density ¢ relative to k, i.e., taking into account the additional
process of addition or deletion of mass at Ok via the “configurational” form ¥, of . With the help of the
transport relation

ﬁZ/Klﬁ—l-/aprv,{-n (4.7

via Eq. (4.3), lﬁ representing the partial time derivative of i, one obtains the form

w0~ [ = [n= [on- [or [o-w-vpon (48)

12 The case of total energy balance is a bit more involved, and so dealt with separately below.
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for #(k) from Egs. (4.4) and (4.6). Adapting next the argument of Gurtin (1995) to the current context,

assume that %(x) is in fact independent of the choice, the evolving control region, i.e.,if y: I X R — Bis a
second such choice, then %(x) = %(y). From Eq. (4.8), this can be the case for all such x only if
(4.9)

Y=y
holds identically, with ¢ € {, Qé:ﬂ o, on}, n being the specific entropy. As such, Eq. (4.8) reduces to

,@(K):/lﬁ—/n— ¢-n— /o:/lﬁ—/n— ¢K~n—/a (4.10)
K K oK K K K oK K
for all k, while Egs. (4.6) and (4.9) imply in particular the forms

(4.11)

P;\':P+Qé®vm
2e=2+ou® 0,
4. = q — bonuy,

for the corresponding flux fields relative to x; in particular, that for ¢ follows from the entropy balance and

Clausius—Duhem constitutive forms
(4.12)

k=0"4q,
o=0""r
for the entropy flux and external supply rate densities, 6 being the absolute temperature.
Turning now to the energy balance, this is based in the dynamic configurational context in part on the

forms
I, =P + X6 + Efv,,
mIC:b'éK+ﬁ'¢,C+s'U1c (413)

for mechanical energy flux and external supply rate densities, respectively, with respect to k. Here,
(4.14)

éKOK ::é (.>K: [E + (Vf)U,C]QK,
¢K<>K =g OK= [é + (VQ)UK] <>Ka
represent the referential velocity of the control region with respect to E, and the rate of change of ¢ relative

to k, respectively. Further,
(4.15)

E.=FE+oc® v,
represents the form of the configurational or Eshelby stress E relative to k, ¢ being the corresponding
momentum density, and s the corresponding supply-rate density. From Eqgs. (4.11), (4.13) and (4.15), then,

one obtains the form

(b@(K):/e*/hK'nf/SK
K o K
:/é— h-n—/s—&—/vk-(A—ka@vk)n—i—/uk-d (4.16)
K oK K oK K

for &(x), analogous to Eq. (4.8) for the other balance relations, where
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m:= —(vg)T§ - (Vo) u— e,
A=of{o -1 &4 (k—p- )M — (VE'P—(Ve)'Z - E,

T T (4.17)
d:=—(V&)'b—(Vg) B—s,

and

o =¢—0n (4.18)
represents the specific free energy. As above for Eq. (4.8), we now adapt the approach of Gurtin (1995) to
the case of total energy balance. To this end, assume that energy balance is independent of the choice of
evolving control region, i.e., that &(k) = &(y) holds for all evolving control regions k, y. In other words, a

change of evolving control region results in no energy production. From Eq. (4.16), this can only be the
case when m, A and d vanish identically, yielding

c=—(V& &= (Vo) n,
E=o{p—1&-¢—p-s—k}1—(VE'P—(Ve)'Z (4.19)
s=—(V&)'b— (Vo)'B,

for the specific configurational momentum, configurational stress, and configuration external supply rate
density. With these results, the total energy balance (4.16) reduces to

é”“(lc):/Ké - /axh~n - Ks (4.20)

for all k.

Having obtained the configurational fields (4.19), we are now in a position to formulate the so-called
configurational force balance. In the context of smooth inhomogeneity, this can be obtained from the
corresponding translational invariance of &(x) as given by Eq. (4.20), with the time-dependent translation
involved acting on k. As is well-known from, e.g., the continuum theory of dislocations, loss of transla-
tional invariance in the material is associated with the presence of dislocations and may be characterized,
e.g., by the torsion of the corresponding material connection (e.g., Bilby et al., 1955; Noll, 1967). In the
current case of smooth inhomogeneity, however, such invariance applies. Let

Ui =10+ a (4.21)

represent the corresponding induced transformation of v, for @ € 7". Being independent of velocity, the
“internal” energy fields ¢, ¢ and r are invariant with respect to such a transformation, i.e.,

&=¢ 4 =9q, r=r (4.22)
This is not the case, however, for the “mechanical” energy fields &, / and m; indeed, Eq. (4.21) induces the
transformations

K=k+t-a, I'=1+E"a, m' =m+s-a. (4.23)
In addition, it induces that

m=n+f-a=0+f-a (4.24)

for the energy internal supply, or production, rate density, f being the corresponding configurational
quantity. Requiring £ (x) = &(x) then yields the configurational momentum or force balance

/KQCZ/Kf + /aKEKn + /Ks (4.25)
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relative to x from Eq. (4.20). This generalizes the derivation of this balance given by Cermelli and Fried
(1997) for the standard case on the basis of the invariance of the disspation rate with respect to change of
referential or material observer. Clearly, this balance is in essence of material, rather than spatial, character.
Combining lastly Eq. (4.19) and the localized form of the configurational momentum or force balance
(4.25) yields that

=08 ¢t pu-s—k—o}Vot o{(VH)'s — Vi, — Vo} + (V(VE) P + (V(Ve)'E - (Vo) 'n
(4.26)

for the configurational momentum internal supply rate density or internal configurational “force” via Egs.
(2.3), (3.10c) and (3.19a,b). Clearly, on the basis of Eq. (4.26), then, configurational momentum is “pro-
duced,” among other things, by an inhomogeneous mass density, specific free energy ¢, and deformation
gradient F = V¢, as in the classical case. Additional contributions to f arise in the current context due to
the inhomogeneity of ¢, u and k. These results reduce to those of Gurtin (1995) when inertia, external
supplies and microstructure are neglected, and to those of Cermelli and Fried (1997) when external supplies
and microstructure are neglected. They also reduce to those of Cermelli and Fried (1999) for uniaxial
nematic liquid crystals when external supplies are neglected, when £ is assumed to take the quadratic form
15 - & (I being a lengthscale), and when the microstructure in question is represented by a Euclidean unit
vector field, i.e., the director.

5. Dissipation principle

Although not the main thrust of the current work, the basic thermodynamic results for the class of
materials being considered here following from the Coleman—Noll dissipation principle as based on the
Clausius—Duhem inequality consistent with the current approach are summarized briefly in this section for
completeness and comparison with other approaches. To begin, the form of the dissipation rate relevant to
the current constitutive class is obtained via combination of the reduced local energy balance with the
corresponding form of the entropy balance and the constitutive relations (4.12). This results in the local
form

=P, F+X%, - Vi—m,-c—0"'q-V0—on0—0¢ (5.1)
of the dissipation rate density via Eq. (1), the split

P=P,+P,

2
of the constitutive fields into active and reactive parts, and Eq. (2), the assumption

P.-F+Z% -Vi—m-c=0 (5.3)

(e.g., Capriz, 1989) that the constraints are “perfect.” In other words, they do no work.

Consider now the case of viscous, elastic material behaviour for the class of materials with micro-
structure and moving defects under consideration, something that would apply to, e.g., liquid crystals, or
granular materials. In this case, we have the basic constitutive form

%(0,F,¢,V0,V¢, F,¢) =%(0,F,n(s),V0,m..(Vs), F,m..3) (5.4)

for the dependent constitutive fields P,, X,, n,, ¢, 1 and ¢; recall that = : #~ — ¥ represents the projection
of #" onto the structure submanifold; further, n,, : #~ — T,(,)% represents the induced projection at s € #".
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For example, in the case of uniaxial nematic liquid crystals, we would have ¥ = 7", 4 = §?, n(a) = a/|al,
and so m,, = | — n(a) ® n(a), for all non-zero a € #". One then obtains in the standard way the restrictions

n= =0y,

0= v,

2, = 0P v = Qn;rg P, 7 (Ve)» (55)
0=10

0= qo.,é = n;rg (p,n*géa

on the constitutive parts of the dependent constitutive fields from the dissipation inequality ¢ > 0 in the
context of the Coleman—Noll dissipation principle for all thermodynamically admissible processes. Con-
sequently, the specific free energy takes on the reduced constitutive form

@(0,F,¢,V¢) = (0, F,n(¢), 1.(Vg)). (5.6)
Likewise, ¢ reduces to

5={P,— 09 p}F" —(n,+ 09 ) ¢~ 0"'q- V0 (5.7)
from Eq. (5.1). In particular, this implies the equilibrium forms

P =0 (5.8)

Tge = —QP .,

for the constitutive parts of P and =, respectively. Detailed examples of all of these in particular cases, and
in particular that of liquid crystals, can be found in Capriz (1989, parts II and III). Now we turn to the case
that the inhomogeneity of the material with microstructure in question is no longer smooth, i.c., to the case
that this materials contains moving point defects.

6. The case of point defects

The purpose of this section is to touch briefly on the extension of the results of the previous section to the
case when the material contains (non-smooth) inhomogeneities which are point-like, e.g., defect cores in
liquid crystals. In a particle, these are represented in the model as isolated singularities in the micro-
structural field ¢, := ¢(#,-) : B— ¥ at each ¢ € I. On the other hand, continuum fields such as the material
velocity &, : B — ¥ are smooth in all points of B C E by assumption. A complete formulation of this case
depends as well on particular forms for the constitutive relations for the material in question, something
beyond the scope of the current work. As such, attention is restricted here to the basic forms taken by the
balance relations in this case; for a complete formulation along these lines in the case of defective nematic
fluids, the interested reader is refered to Cermelli and Fried (1999). For simplicity, the formulation in this
section is carried out for the case of a single defect, and all external supply rate densities are neglected. Since
singularities may arise in the remaining fields of the formulation, the balance relations must be reformu-
lated to accomodate this possibility.

To this end, let D, C B represent a ball of radius e about the defect core in the reference configuration B
at some arbitrary time (e.g., t = 0). Further, let 6. : / x D, — B represent the evolution of D, with respect to
the material, such that £¢0. : I x D. — E represents that of D, relative to E. In this case, the curve
0o : I — B, which we identify with lim._, J., represents the evolution of this core with respect to the ma-
terial. Adapting then, the approaches of Gurtin and Podio-Guidugli (1996) and Cermelli and Fried (1999)
to the current context, balance relations along x containing d. (i.e., 6. C k) are first formulated outside the
defect zone, i.e., for k \ J., and then evaluated as e tends to zero. In particular, to this end, consider the
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integral over 0(k \ d.) of a flux density ¢. Since O(x \ J.) = Ok U dJ,, this integral can be expressed in the
form

/ ¢'n: ¢ Mo(10\6,) / ¢ My(10\5,) ¢ n— ¢'na (61)
3(k\ e K 00

o

with

26, — Moo, - (6.2)

In addition, the transport theorem for « \ J. takes the form

/ lﬁ = / lﬁ =+ / lpvlc\(iF * M350\ 5)
K\ e K\ e 0(r\de)

= / _ U+ [ Yvas,  magas,) + / _ Vs, Mogas,)
K\ e oK 96,

o — Morc, Mo(0\,)

Mo (i\é.

= / lﬁ+ Yo, -n— Yus, - n, (6.3)
K\Oe Ok 06,
again from 0(x \ d.) = Ok U 3J,, Eq. (6.2) and the results
Ui\ Lo = Vil Ui\oc las, = Voclao, - (6.4)
Combining Egs. (6.1) and (6.3) yields
[ on=f v [oon+ [ -n (65)
K\Oe 0(1\de) K\ e oK 00,

via Egs. (4.6) and (4.9). Assume next that i is regular in the sense of Gurtin and Podio-Guidugli (1996). In
particular, this implies that ¥ is (i) smooth away from J, (ii) integrable on B uniformly for ¢ in a compact

interval (iii), #— [ I . is differentiable for all x, and (iv), lim._, [,; ¥n exists. In this case, one obtains

/l//—hm zﬁ + Yo.-n — lim Yus, - n (6.6)

o =0 Jas,

from Eq. (6.3), as well as

/x//_hm T+ / ¢, -n — hm os. - (6.7)
K\6 35,

from Eq. (6.5) for a balance relation in the absence of external supplies and the presence of a defect in B. In
particular, assuming that ¢ is continuous, and that ¢ is regular, Egs. (6.6) and (6.7) imply in particular the
forms

/Q:/ Qvlc'”“i’mDa/Q&:/ Pl€n+tD’ (68)
K o K oK

for mass and continuum momentum balance in a region with defect from Eq. (3.19a,b), with

mp := —lim [ guvs - n, (6.9)
c—0 30,

the relative mass flux at the defect, and
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tp:=—lim [ Psn=—lim [ (P+ of®uvs)n, (6.10)
=0 Jas, =0 Jas.
the stress vector relative to the motion of the defect at the defect. More generally, we have the forms

lim o = lim 11:+/ X.n+op, lim oc = lim f—i—/ E.n+ep+gp (6.11)
=0 K\ Oc =0 K\ Oe oK =0 K\ Oc =0 K\ Oc oK

for microstructural and configuration momentum balances, respectively, in such a region, on the basis of
Egs. (3.10a—) and (4.25), respectively, with

op:=—lim [ X;n=—lim [ (X+ ou® vs)n,

=0 Jas, =0 Jas.
ep = —llng E(;En = —111'1’(}/ (E + oc (9 Uat)n. (6123, b)
=0 Jos 7 oo

e

The additional configurational field g, appears due to the loss of translational invariance in the material
upon which Eq. (4.25) is based.

The evaluation of the limits appearing in Egs. (6.9)—(6.11) is contingent on the behaviour of the field
densities appearing in the balance relations of the previous section at the defect. This in turn is crucially
dependent on the particular forms taken by the constitutive relations of the model. In particular, assuming
that the mechanical, non-mechanical and configurational forces acting on the defect remain bounded there,
the constitutive fluxes P;,, X5, E;, and ¢, satisfy estimates such as

lim/ |Ps.n| = 0(1), lim [ &P V|Zsnf =0(1),
00

e—0 =0 Ja5

o), tiny [ g, -nl = 0(1), (6.13)
R 00,

lim | |Esn
5*)0 55

0
respectively (e.g., Cermelli and Fried (1999), in the case of defective nematic fluids). Given physically
reasonable constitutive relations for the fluxes, and assuming that any constraint fields (e.g., pressure in the
case of incompressibility) are integrable about the defect, one can show via straightforward generalization
of the results of Cermelli and Fried (1999) for the case of defective nematic fluids to the current context that
Eq. (6.13) follows from those lim._, &|;,, = O(¢™") and lim._, V¢ [5,= O(e™") of the derivatives of ¢. In
particular, these latter estimates are based on the physical assumption that the structure field experience no
pathological oscillation near the defect.
Finally, consider the form

lim e= / h,-n+ hp (6.14)
=0 K\Oe oK
for the total energy balance via Eq. (4.16), with
hp == —lim | ks, -n, (6.15)
e—0 36,

the total energy flux at the defect core; we also work with

gp = —lim [ ¢q; -n (6.16)
e—0 06,
in what follows. On the basis of the estimates (6.13), both of these exist. To deal with the singularity of the
microstructural field ¢ at the defect core in the context of A, assume that there exists a field v : / x §2 — ¥~
on the unit sphere S? such that
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v(t,m) i= lim {5+ (V&) (2, 80(0) + em)} (6.17)

holds. On this basis, v(z, ) represents, in an asymptotic sense, the rate at which the microstructural field g is
changing at the defect in the direction n € S? at time ¢ € 1. As with the estimates (6.13), the existence of v
can be derived on the basis of the specific, physically reasonable constitutive relations for these fluxes when
one assumes in particular that ¢ does not experience pathological oscillations near the defect. Consequently,
then, Ap takes the form

hD:*C]D+50'tD+(5.0*&D)'eD+/V'(PD (6.18)

S2

via the results

50 -tp := —lim vs, - Ps,n,
e—0 36,
/ v-op=—lim [ [g+ (Vo)vs |- Zs.m, (6.19)
s =0 Jas,
(50 - ED) "€p = —lina (vs, — f) - Es.n,
=0 Jas,

where

En (1) == &(80(1)) = (1, 80(1)) (6.20)
represents the continuum velocity at the defect core, and

op(t,n) = —lirr(}{ez(zgfn)(t, So(t) +en)}, (6.21)

the microstructural stress “vector” at the defect core in the direction n € S? away from the defect core at
time ¢ € /. With the help of the regularity of ¢ and the corresponding result

lim [ Lo(¢-&n=0, (6.22)
=0 Jas,
one obtains the alternative form

hD:—CID-FfD'tD—F(So—éD)'e%r-F/V-(pD (6.23)

S2

of hp via Egs. (4.11) and (4.13) in terms of the microstructural part

E =o{lp—p-s—k}l — (V) X~ (Vo) on® v, (6.24)
of E;,, where

ey == —lim [ Ej'n (6.25)

e—0 35,

is defined analogous to Eq. (6.12b).

This completes the basic formulation of the balance relations in the presence of a point defect. Further,
more detailed result can be obtained in the context of specific constitutive models for the microstructure in
question, and are beyond the scope of this work. For further details on the application to the crack

13 These follow from the integrability assumptions (6.13) and Lemma Al of Cermelli and Fried (1999).
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propagation, the reader is refered to Gurtin and Podio-Guidugli (1996), and for the case of defective ne-
matic fluids to the work of Cermelli and Fried (1999).
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