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Abstract

The purpose of this work is the formulation of models for the dynamics of continua with microstructure and material

inhomogeneity. In particular, attention is focused here on the balance relations and con®gurational ®elds for such

continua obtained via invariance. To this end, the approach of Capriz (Capriz, G., 1989. Springer Tracts in Natural

Philosophy, vol. 37) to the formulation of continua with microstructure as based upon the invariance of the internal

power with respect to superimposed rigid-body rotations is extended to one based upon the Euclidean frame-indif-

ference of the total energy balance. This is then combined with an extension of the work of Gurtin (Gurtin, M.E., 1995.

Arch. Rat. Mech. Anal. 131, 67±100) on the formulation of static con®gurational ®elds to the case of dynamic and

microstructure. In this way, one obtains in particular the dependence of the con®gurational momentum density,

con®gurational or Eshelby stress, as well as the internal and external con®gurational momentum supply rate, or

con®gurational force, densities, on the corresponding microstructural ®elds. These can then be used to derive the forms

of the balance relations relevant to the case that the continuum contains defects at which the microstructure is dis-

continuous. As an application of the formulation, this is done here for the case of a continuum with microstructure

containing a single defect. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In order to apply models for materials with microstructure (e.g., multiphase materials, granular or
damaged materials, liquid crystals, polycrystals) to the description of the behaviour of actual such mate-
rials, one must in general account as well for the fact that these are fundamentally heterogeneous in nature,
i.e., contain various kinds of material inhomogeneities such as point defects, dislocations, shear bands,
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microcracks, and so on. Attempts to incorporate this fact into the continuum modeling of such materials
have led to a number of approaches and viewpoints on the issue, depending in part on the nature of the
structure or heterogeneity in question. In the context of ®eld-based approaches, for example, the Ozeen±
Z�ocher±Frank theory forms the basis of a number of comprehensive models for the equilibrium behaviour
of nematic liquid crystals containing point and line defects (e.g., Brinkman and Cladis, 1982; Kl�eman, 1983;
Virga, 1994). Such models have been recently extended, on the basis of the Ericksen±Leslie theory, to the
dynamic case by Cermelli and Fried (1999), accounting in particular for the e�ect of microstructural in-
homogeneity on the general behaviour via the approach of Gurtin (1995) to con®gurational forces. A quite
di�erent approach, ®nding application in the realm of polycrystals containing inclusions, microcracks, and
so on, is that o�ered by homogenization and self-consistent methods (e.g., Suqu�et, 1998). Here, both mi-
crostructure (e.g., texture, di�erent phases, twins) and defects (e.g., microcracks) fall under the rubic of
``material inhomogeneity'' in the form of a dependence of material properties (e.g., elasticity or compliance
tensors) on material element. As implied by the original work of Eshelby (1951, 1970), a ®eld-based de-
scription of such material inhomogeneity, and the corresponding forms taken by con®gurational ®elds such
as the Eshelby stress, depend crucially on the type of microstructure in question. One purpose of the current
work is the formulation of such con®gurational ®elds including contributions from a general class of mi-
crostructure, including such cases as phase transitions, granular and damaged materials, as well as liquid
crystals and other materials such as polycrystals possessing an orientation structure as characterized, e.g.,
by a director ®eld. In particular, this is done here both for the classical case in which the inhomogeneities
are smoothly distributed in the material, as well as for the case of point defects.

The formulation to this end is carried out in a dynamical setting via an extension of the approach of
Capriz (1989) for continua with microstructure as based on the invariance of the internal power with re-
spect to superimposed rigid-body rotations to the one based on the invariance of the total energy balance
with respect to the change 2 of observer. Such an approach has a long tradition; in the realm of pure
continuum mechanics, the insight that such invariance of certain ``action integrals'' can be used to derive
mechanical balance relations goes back at least to the work of the Cosserat brothers (Cosserat and
Cosserat, 1909; also see, e.g., Truesdell and Toupin, 1960) on rods and shells, and was extended to continua
with general microstructure by Toupin (1964) in his theory of oriented hyperelastic materials (see, e.g.,
Truesdell and Noll, 1992, Section 123). The extension of this idea to the thermodynamical or thermome-
chanical context was achieved by Green and Rivlin (1964), who used the invariance of the total energy
balance with respect to superimposed rigid-body motions to derive the mass, linear momentum, and an-
gular momentum, balances (see, e.g., Marsden and Hughes, 1983, Chapter 2). This approach has been
substantially rigourized, extended and generalized by �Silhav�y (see, e.g., �Silhav�y, 1997, Chapter 6) for
general thermodynamic systems via the transformation properties of working and heating with respect to
change of observer. Invariance of the total energy balance with respect to change of observer was used by
Capriz et al. (1982) to derive balance relations in the case of a�ne microstructure, by Pitteri (1990) in the
context of a statistical mechanical approach to models for microstructure, and most recently by Capriz and
Virga (1994) in the context of continua with general microstructure. Central to this approach are (1), the
forms taken by the total energy density, total energy ¯ux density, and total energy (external) supply rate
density, as well as (2), the transformation properties of the ®elds in question with respect to the change of

2 Note that the balance relations obtained via invariance are independent of whether the invariance involved is with respect to

superimposed rigid-body motions or with respect to change of observer (i.e., Euclidean frame-indi�erence). By contrast, in the context

of constitutive relations i.e., relations between the ®elds of interest, Euclidean frame-indi�erence and invariance with respect to

superimposed rigid-body motions are never equivalent (see, e.g., Svendsen and Bertram, 1999). Indeed, in this context, the latter

requirement is stronger, i.e., equivalent to those of Euclidean frame-indi�erence plus form-invariance, which together constitute what is

commonly known as material frame-indi�erence.
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Euclidean observer. From the point of view of the treatment of observers and the invariance of the energy
balance with respect to change of these, the current approach represents in part an extension to the general
microstructure of that found in Capriz et al. (1982) for a�ne microstructure. Comparison of the current
approach with the more recent work of Capriz and Virga (1994) on materials with microstructure shows
that basic di�erences arise in (1), the modeling of the microstructural momentum balance, (2), the trans-
formation properties of certain micro®elds, and (3), the treatment of the kinetic energy and inertia of the
microstructure. Except for the latter aspect, however, the resulting balance relations for the microstructure
are in essence the same.

The connection with material inhomogeneity and possible defect structure is achieved via a combination
of this approach to microstructure with an extension of the recent balance relation, dissipation-based
approach of Gurtin (1995) to the formulation of (static) con®gurational forces to dynamics, in some ways
analogous to that of Cermelli and Fried (1997). In particular, such an approach to con®gurational forces
extends earlier variational- or virtual-power-based formulations of such forces (e.g., Maugin et al., 1992;
Maugin, 1993) to a non-equilibrium thermodynamic context. Such a combined approach has been used
recently by Cermelli and Fried (1999) to formulate evolution equations and con®gurational ®elds for de-
fective nematic ¯uids. Similarly, Mariano (2000) has combined the approach of Capriz (1989) to micro-
structure with that of Gurtin (1995) to con®gurational forces and applied the resulting formulation 3 in
particular to two-phase continua and continua with singular surfaces.

To begin, the kinematics of a continuum with microstructure is brie¯y summarized (Section 2). With
this in hand, we turn then to the formulation of balances relations for a continuum with microstruc-
ture containing no defects (Section 3) on the basis of the Euclidean frame-indi�erence of the total energy
balance for such a continuum. In preparation for the case of a continuum with microstruture and defects,
we derive next the forms taken by the con®gurational ®elds for a continuum with microstructure
and smoothly varying material inhomogeneity (Section 4). After summarizing basic results from the dis-
sipation principle (Section 5) consistent with the current approach for completeness, we turn ®nally
to application of the basic results to the case of a continuum with microstructure and point defects (Section
6). Before we begin, a word on notation. If W and Z represent linear spaces, let Lin�W;Z� represent
the set of all linear mappings from W to Z. If in addition these are inner product spaces, the corre-
sponding inner products induce the transpose AT 2 Lin�Z;W� of any A 2 Lin�W;Z�, as well as the in-
ner product A � B :� trW�ATB� � trZ�ABT� on Lin�W;Z� for all A;B 2 Lin�W;Z�. In this case, we
can also identify the symmetric sym�A� :� 1

2
�A� AT� and skew-symmetric skw�A� :� 1

2
�Aÿ AT� parts of

any A 2 Lin�W;W�; let Sym�W;W� and Skw�W;W�, respectively, represent the corresponding sub-
spaces of Lin�W;W�. The principle linear space in this work is of course that of three-dimensional Eu-
clidean vector space V. Other mathematical notations and concepts will be introduced as needed in the
sequel.

2. Kinematics

Let E represent a three-dimensional Euclidean point space and B � E an arbitrary reference con®gu-
ration of some material body. The motion of the material body with respect to B and E takes as usual the
form

n : I � B! Ej�t; b� 7!p � n�t; b� �2:1�

3 I thank the editors of this special issue for drawing my attention to the work of Capriz and Virga (1994) and Mariano (2000).
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over a time interval I, with nt � n�t; �� : B! E a local di�eomorphism for all t 2 I , and nb :� n��; b� : I ! E,
a smooth curve in E for all b 2 B. Basic kinematic quantities of interest obtained from Eq. (2.1) include the
material velocity

_n : I � B!V �2:2�
and the deformation gradient

F :� rn : I � B! Lin��V;V�: �2:3�
As usual, we have the split

_FFÿ1 � _�rn��rn�ÿ1 � �r _n��rn�ÿ1 � D�W : I � B! Lin�V;V� �2:4�
of the velocity gradient (i.e., expressed as a time-dependent ®eld on B) into its symmetric D :� sym� _FFÿ1�
and skew-symmetric W :� skw� _FFÿ1� parts.

As discussed in Section 1, continua with microstructure, e.g., granular materials, or liquid crystals, are of
interest in this work. Field models for such materials rely on an idealization of the ``kinematics'' of the
microstructure in the form of, in the referential context, a time-dependent ®eld on B, e.g., the Cosserat
rotation ®eld, or the director ®eld for uniaxial liquid crystals. From the mathematical point of view, a
formulation su�ciently general to encompass such standard models is obtained when this ®eld is assumed
to take values in a submanifold 4 G of some ®nite-dimensional inner product space W. Let i : G!WofG
represent the smooth inclusion of G into W, and p : W! G the corresponding projection of W onto G,
such that p � i � 1G holds. To simplify the formulation to follow, it is useful to work with the form

1 : I � B!Wj�t; b� 7!s � 1�t; b� �2:5�
of the structure ®eld included into W; in terms of 1, the actual structure ®eld 5 is given by p � 1 : I � B! G.
Although not important for the formulation of the balance relations, the distinction between 1 and p � 1

becomes so for the constitutive relations, which depend directly on p � 1, not 1 (see Section 5). Likewise,
they depend in general directly on the corresponding (induced) projections of the kinematic ®elds
r1 : I � B! Lin�V;W�, _1 : I � B!W, and r _1 : I � B! Lin�V;W� associated with 1 onto the corre-
sponding tensor bundles of G.

Turning next to Euclidean observers, these are characterized as usual by the fact that they measure the
same time lapses and spatial distances between events in classical spacetime. Because of this, the motion

k : I � E! Ej�t; p� 7!p 0 � k�t; p� �2:6�
of an unprimed Euclidean observer with respect to a primed one represents a Euclidean isometry at each
t 2 I , i.e., kt :� k�t; �� : E! E is an a�ne isometry for all t 2 I . Further, kp :� k��; p� 2 C2�I ;E� 8p 2 E.
Being an a�ne isometry for all t 2 I , k can be expressed in the form

k�t; p� � k�t; o� �Q�t��p ÿ o� 8 t 2 I and 8p; o 2 E; �2:7�
with

Q : I ! Rot�V;V�jt 7!�rk��t; o� �: Q�t� �2:8�

4 For example, in the case of uniaxial nematic liquid crystals, G could be the unit sphere S2, a smooth compact submanifold of three-

dimensional Euclidean vector space V b�W. In this case, we have i�e� � e for all e 2 S2, and p�a� � a=jaj for all non-zero a 2V.
5 It is the projected form p � 1 of 1 which corresponds directly to the generic structure ®eld m of Capriz (1989). On the other hand,

the current approach is formally simpler than his in the sense that his m takes values on a general ®nite-dimensional manifold M which

is not necessarily a submanifold of some linear space. Nevertheless, all special cases considered by him can also formulated as special

cases of the current, formally simpler framework.

1186 B. Svendsen / International Journal of Solids and Structures 38 (2001) 1183±1200



corresponding rotation of k (independent of o 2 E). For simplicity, we assume without loss of (physical)
generality in what follows that Q�0� � 1.

Let s be any time-dependent V-tensor ®eld on B with respect to the unprimed observer, and s0 its
counterpart with respect to the primed one. Central to the formulation of the Euclidean frame-indi�erence
of tensor ®elds and other quantities in this work is the tensor ®eld

Ds�b� :� fk�s0 ÿ sg�0; b� �2:9�
on B which represents the deviation of s from being Euclidean frame-indi�erent at (the arbitrary time)
t � 0, with k�s0 the ``pull-back'' of s0 to the unprimed observer via k. Take for example the material velocity
_n and its gradient r _n. The usual transformation

n0 � k n � Q�nÿ o� � ko �2:10�
of n from Eq. (2.7) with �k n��t; b� :� k�t; n�t; b�� induces via space and time di�erentiation those

_n0 � _Q�ro � n� � _ko �Q _n;
r _n0 � _Q�rn� �Q�r _n�; �2:11�

for _n and r _n, respectively, with

ro�p� :� p ÿ o; �2:12�
the position vector of p � n�t; b� 2 E relative to o 2 E. In terms of Eq. (2.9), Eq. (2.11) takes the forms

D _n�b� � fQT _n0 ÿ _ng�0; b� � Xro�n�0; b�� � t;
D�r _n��b� � fQT�r _n0� ÿ r _ng�0; b� � X�rn��0; b�; �2:13a; b�

via Eq. (2.12), with X :� _Q�0� 2 Skw�V;V� and t :� _ko�0� 2V (recall that Q�0� � 1). As such, we have
r�D _n��b� � D�r _n��b� � X�rn��0; b�.

Next, we turn to the transformation properties of the ®elds representing the kinematics of the micro-
structure in the formulation. Such transformation properties are determined in part by the physical in-
terpretation of this kinematic ®eld. This issue has been discussed at length in Capriz (1989) for various
kinds of microstructure; here, attention is restricted to the class of microstructure for which the kinematic
®eld 1 is considered to be Euclidean frame-indi�erent, something applying to all special cases of interest
(e.g., the director ®eld for uniaxial nematic liquid crystals). From this point of view, 1, which is sometimes
interpreted as a ``micro-displacement,'' can be contrasted with the standard displacement ®eld, which is not
Euclidean frame-indi�erent. Indeed, from the point of view of Euclidean frame-indi�erence, 1 is more akin
to, e.g., F. In any case, on this basis, the observer transformation (2.7) induces that

1 0 � `�Q; 1� �2:14�
of 1 via the left action ` : Rot�V;V� �W!W of Rot�V;V� on W. Consequently, D1�b� � 0 follows
from Eq. (2.9). In turn, Eq. (2.14) induces the transformation relations

D _1�b� �A10
�b�X;

D�r _1��b� � �rA10
�S�b�X �2:15a; b�

for _1 and r _1, respectively, which can be compared to Eq. (2.13a,b) for the material velocity _n and its
gradient r _n. Here, 10 :� 1�0; ��, A1 :�A � 1, and

A�s� :� D1`s 2 Lin�Skw�V;V�;W� �2:16�
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represents the action of the Lie algebra Skw�V;V� of Rot�V;V� on W induced by that ` of
Rot�V;V� on W, D1`s being the Fr�echet derivative of `s :� `��; s� : Rot �V;V� !W at the identity 1 2
Rot�V;V�. Further, the notation �rA10

�S has been introduced for the linear transformation �rA10
�S�b� 2

Lin�Skw �V;V�;Lin�V;W�� induced by �rA10
��b� 2 Lin�V;Lin�Skw�V;V�;W��. In addition, that

A�s� for D1`s re¯ects the formal correspondence of this mapping with the ``in®nitesimal generator''
mapping 6 introduced by Capriz (1989, Section 3) in this context.

3. Euclidean frame-indi�erence and balance relations

The formulation of the balance relations for a material with microstructure to follow is caried out in a
referential setting. As such, all time-dependent ®elds to follow will be the ones on B unless otherwise in-
dicated. For simplicity, attention is restricted here to thermomechanical processes that are smooth in time.
In this sense, the formulation of the total energy balance pursued here is consistent with, e.g., the more
general thermomechanical history-based approach of �Silhav�y (1997, Chapter 6). Further, assume for the
moment that all ®elds of interest on B are smooth, i.e., that B contains no singular points, lines or surfaces,
i.e., defects.

As already discussed brie¯y in Section 1, the approach being pursued here to the formulation of balance
relations for materials with microstructure is based on the invariance of the total energy balance with
respect to Euclidean observer. We begin then with the formulation of this relation. To this end, let 7Z

P
h � n : I ! R �3:1�

represent the total energy ¯ux, andZ
P

s : I ! R �3:2�

the total energy supply rate, to the material from its environment (i.e., external) during its motion n in E
with respect to any P � B. As usual, h represents the total energy ¯ux density, and s the corresponding
supply rate density. Combining Eqs. (3.1) and (3.2) with the total energy 8Z

P
e : I ! R �3:3�

of the system yields the quantity

E�P � :�
_Z
P

eÿ
Z

oP
h � nÿ

Z
P

s �
Z

P
_eÿ divhÿ s �3:4�

measuring the total energy balance of, or in, the system. In particular, the total energy of the system is
balanced when E�P � vanishes for all P � B.

6 To be precise, Capriz (1989, Section 3) de®ned this mapping on the axial vectors of the elements of Skw�V;V�.
7 We leave the volume dv and surface da measures out of the corresponding integral notations in this work for simplicity. In

addition, the unit vector ®eld n normal to boundaries of three-dimensional regions is as usual assumed to be outwardly directed unless

otherwise indicated.
8 As discussed by �Silhav�y (1997, Section 5.3), in the context of the energy balance, the existence of

R
P e, and so e, is based upon the

so-called accessibility assumption, i.e., that any two thermomechanical states of the material can be connected by some process.
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The formulation of the invariance of E�P � as given in Eq. (3.4) with respect to change of observer is
based on the decompositions

e � .e� .k;
h � ÿq� l;
s � r � m;

�3:5�

of the densities e, h and s into their Euclidean frame-indi�erent and observer-dependent parts. In partic-
ular, the Euclidean frame-indi�erent or ``internal'' parts of these, i.e., .e, q and r, represent as usual the
internal energy, heat ¯ux, and internal energy supply rate, densities, respectively, with . the mass density.
The observer-dependent parts .k, l and m represent the kinetic energy, mechanical energy ¯ux, and me-
chanical external supply rate, densities, respectively. Being Euclidean frame-indi�erent, the transformation
relations

D. � 0; De � 0; Dq � 0; Dr � 0 �3:6a±d�
follow via Eq. (2.9) for ., e, q, and r, respectively. In turn, these induce those

De � .Dk; Dh � Dl; Ds � Dm �3:7�
for total energy, total energy ¯ux, and total energy external supply rate, density, respectively.

Being of a kinematic or mechanical nature, the class of microstructure under consideration here con-
tributes to the speci®c kinetic energy k, the total mechanical energy ¯ux density l, and corresponding ex-
ternal supply rate density m of the system. Accordingly, we have the generalized forms

k � 1
2

_n � _n� ks;
_k � �n � _n� _l � _1;
l � PT _n� RT _1;
m � b � _n� b � _1

�3:8a±d�

for k, _k, l and m, respectively. Here, _n represents the continuum speci®c momentum, l that of the mi-
crostructure, P the ®rst Piola-Kirchho� tress, R the microstructural stress or momentum ¯ux, b the con-
tinuum momentum external supply rate density, b the microstructural momentum external supply rate
density, and ks the contribution to k from the microstructure, i.e., from 1 and _1. The form (3.8b) for _k, in
particular that _ks � _l � _1 for _ks, generalizes the ``Lagrangian'' approach to the formulation of _k considered
by Capriz (1989, Section 7) and Capriz and Virga (1994). In the case of the ubiquitous quadratic form
ks�1; _1� � 1

2
_1 �H�1� _1 for ks, for example, _l takes the form _l � H�1� 1

2
_H _1, the speci®c microinertia tensor H

being as usual symmetric and positive-de®nite.
Now, on the basis of Eqs. (3.5) and (3.8a±d), E�P � as given in Eq. (3.4) reduces to

E�P � �
_Z

P
.e�

Z
oP

q � nÿ
Z

P
r �

Z
P

ck � z � _n� p � _1ÿ P � r _nÿ R � r _1 �3:9�

in terms of the ®elds

c :� _.; �3:10a�

z :� .�nÿ divP ÿ b; �3:10b�

p :� . _lÿ divRÿ b; �3:10c�
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on B, representing production-like quantities for mass, continuum momentum, and microstructural 9

momentum, respectively. Together with Eq. (3.6a±d), then, the transformation relations

DP � 0; DR � 0 �3:11a; b�
for P and R, as well as those 10

Dz � 0; Dp � 0 �3:12a; b�
for the internal supply rate densities induce in turn the transformation relation

DE�P � :� �k�E0��P� ÿ E�P �

�
Z

P

1

2
c0 D _n � D _n� c0 Dks � �z0 � c0

_n0� � D _n�
Z

P
p0 � D _1ÿ P0 � D�r _n� ÿ R0 � D�r _1� �3:13�

for E�P � via Eqs. (3.8a) and (3.9) with respect to any P � B. Note that Eq. (3.6a) implies Dc � 0 via
Eq. (3.10a) and the Euclidean frame-indi�erence of the material time derivative. Consequently, E�P � will
be Euclidean frame-indi�erent, or independent of Euclidean observer, i� DE�P � vanishes. Note that this
condition generalizes similar considerations based on the invariance of the internal power worked with by
Capriz (1989, Section 9) and Segev (1994) to the context of total energy balance (see also Capriz and Virga
(1994), in this regard).

Of all the transformations appearing in Eq. (3.13), only that Dks for the contribution of the micro-
structure to the speci®c kinetic energy is yet to be determined. To this end, assume that the form ks�1; _1� of
the dependence of ks on 1 and _1 is observer-invariant. In this case,

fk��k 0s �10; _10��gjt�0 � k 0s �10; _10 � D _1� � ks�10; _10 � D _1�; �3:14�
and so

Dks � ks�10; _10 � D _1� ÿ ks�10; _10� �3:15�
follow from Eqs. (2.9), (2.14) and Q�0� � 1. So, as long as ks��; �� is continuous in its second argument, Dks

vanishes when D _1 does. In particular, this can be veri®ed for special cases, e.g., for the quadratic form
ks � 1

2
_1 �H�1� _1. Since D _1 is not zero in general (i.e., from Eq. (2.15a)), Eq. (3.15) implies that ks is in general

not Euclidean frame-indi�erent.
Now, Eq. (3.13) clearly holds for all Euclidean observer transformations. Consequently, E�P � will be

observer-invariant if and only if Eq. (3.13) vanishes for all possible such transformations. In particular,
consider the special observer transformation of a pure translation, i.e., X � 0. Then,

D _n � t; D�r _n� � 0;
D _1 � 0; D�r _1� � 0

�3:16�

follow from Eqs. (2.13a,b) and (2.15a,b), leading in turn to the reduced form

DE�P � � 1

2
�t � t�

Z
P

c0 � t �
Z

P
z0 � c0

_n0 �3:17�

9 The microstructural internal momentum supply rate density p appearing in Eq. (3.10c) corresponds to the ®eld ÿf in the approach

Capriz (1989, Section 8) and that of Capriz and Virga (1994) when we model . _l via a ``Lagrangian'' form for this quantity in terms of

the kinetic (co)energy.
10 On the basis of Eqs. (3.6a), (3.10b), and (3.11a), the assumption (3.12a) is equivalent to the standard result .D_v � Db (e.g.,

Marsden and Hughes, 1983; see also �Silhav�y, 1997, Chapter 6). Similarly, Eq. (3.12b) is equivalent to .D _l � Db. Note that this latter

transformation is qualitatively di�erent from that for the external supply rate density formulated by Capriz et al. (1982) for a�ne

microstructure with the help of mass-point considerations, and from that of Capriz and Virga, who assume Db � 0.
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of Eq. (3.13) via Eq. (3.15) and the assumed continuity of ks��; �� in its second argument. This last result
represents a polynomial in t. For this polynomial to vanish for all t, the corresponding coe�cients must
vanish identically, yieldingZ

P
c0 � 0) c � _. � 0 �3:18�

via Eq. (3.10a), as well asZ
P

z0 � 0) z � .�nÿ divP ÿ b � 0 �3:19a; b�

from Eq. (3.10b). The second form of these last two expressions results from the fact that t � 0 is physically
arbitrary, as well as the assumed continuity of the integrands. On account of Eqs. (3.18) and (3.19a,b), then,
Eq. (3.13) reduces to

DE�P � � X �
Z

P
AT

10
p0 ÿ P0FT

0 ÿ �rA10
�ST

R0 �3:20�

via the transformation relations (2.13a,b) and (2.15a,b). Since the ®rst and third terms appearing in the
integrand of Eq. (3.20) take values in Skw�V;V�, DE�P� as given by Eq. (3.20) vanishes for all
X 2 Skw�V;V� i�

skw�PFT� �AT
1 pÿ �rA1�ST

R �3:21�
holds identically. This represents in the current context the important result 11 obtained by Capriz (1989,
Eq. (9.4)) on the basis of the invariance of the internal power with respect to superimposed rigid-body
rotations. As noted by him, the combination of Eq. (3.21) with the evolution relation (3.10c) for the mi-
crostructural speci®c momentum yields the ``standard'' local form

.AT
1 _l � skw�PFT� � div�AT

1 R� �AT
1 b �3:22�

of moment of momentum balance taking values in Skw�V;V� in which skw�PFT� appears as a source
term. Finally, Eq. (3.10c), as well as the results (3.18) and (3.19), lead to the reduced form

E�P � �
Z

P
. _e� divqÿ r � p � _1ÿ P � r _nÿ R � r _1 �3:23�

for E�n� from Eq. (3.9) via the divergence theorem. Assuming then there exists at least one observer with
respect to which E�P � in fact vanishes, it does so with respect to all, and yields the localized form

. _e � P � r _n� R � r _1ÿ p � _1ÿ divq� r �3:24�
of total energy balance via the assumed continuity of the integrand. Incorporating Eq. (3.21) into Eq. (3.24)
yields the alternative form

. _e � sym�PFT� �D� R � r� _1ÿA1W� �AT
1 R � rW ÿ p � � _1ÿA1W� ÿ divq� r �3:25�

of reduced local energy balance via Eq. (2.4) in terms of the ``Jaumann'' objective time derivative
_1ÿA1W of 1. In particular, since rW is Euclidean frame-indi�erent, Eq. (3.25) shows that the energy
balance is indeed so.

11 Also obtained by Capriz and Virga (1994).
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4. Con®gurational ®elds and microstructure

Now, we turn to the formulation of the con®gurational ®elds for a continuum with microstructure of the
type considered in the last section. To this end, we follow Gurtin (1995) and Cermelli and Fried (1997) in
dealing ®rst with the case in which the material inhomogeneity is smoothly varying, i.e., no defects. The
formulation of these ®elds is based on the notion of an evolving control region in B, i.e., one into, or out of,
which elements of the material body, may ¯ow during some process. Let R � B represent this set at some
arbitrary time (e.g., t � 0). The evolution of this region due to mass ¯ux into or out of it in can be rep-
resented with the help of a time-dependent mapping

j : I � R! B �4:1�
of R into B formally (but not physically) analogous to the motion (2.1) of B in E. In this case,

n j : I � R! E �4:2�
represents the motion of the evolving control region in question with respect to E. Let

vj j :� _j �4:3�
represent the speci®c mass ¯ux corresponding to j. In particular, vjjojt �R� � nojt �R� represents the rate at time t

at which mass enters or leaves the control region at its boundary ojt�R� with unit normal nojt �R�.
To formulate con®gurational ®elds in this framework, consider ®rst the generic balance relation

B�j� :�
_Z

j
wÿ

Z
j

pÿ
Z

oj
/j � nÿ

Z
j

r � 0 �4:4�

for mass, continuum momentum, microstructural momentum, or entropy 12 relative to j. Here, we use the
notationZ

j
w

� �
�t� :�

Z
jt �R�

wt �4:5�

for volume integrals de®ned on j; boundary integrals are de®ned similarly. In Eq. (4.4) appear, the ref-
erential density w, the internal supply or ``production'' rate density p, and the external supply rate density r,
associated with the balance in question. Further,

/j :� /� wcvj �4:6�
represents the form of the corresponding ¯ux density / relative to j, i.e., taking into account the additional
process of addition or deletion of mass at oj via the ``con®gurational'' form wc of w. With the help of the
transport relation

_Z
j

w �
Z

j

�w�
Z

oj
wvj � n �4:7�

via Eq. (4.3), �w representing the partial time derivative of w, one obtains the form

B�j� �
Z

j

�w ÿ
Z

j
p ÿ

Z
oj

/ � n ÿ
Z

j
r �

Z
oj

vj � �wÿ wc�n �4:8�

12 The case of total energy balance is a bit more involved, and so dealt with separately below.
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for B�j� from Eqs. (4.4) and (4.6). Adapting next the argument of Gurtin (1995) to the current context,
assume that B�j� is in fact independent of the choice, the evolving control region, i.e., if v : I � R! B is a
second such choice, then B�j� � B�v�. From Eq. (4.8), this can be the case for all such j only if

wc � w �4:9�
holds identically, with w 2 f.; .�n; .l; .gg, g being the speci®c entropy. As such, Eq. (4.8) reduces to

B�j� �
Z

j

�w ÿ
Z

j
p ÿ

Z
oj

/ � nÿ
Z

j
r �

_Z
j

wÿ
Z

j
p ÿ

Z
oj

/j � n ÿ
Z

j
r �4:10�

for all j, while Eqs. (4.6) and (4.9) imply in particular the forms

Pj � P � .�n
 vj;
Rj � R� .l
 vj;
qj � qÿ h.gvj;

�4:11�

for the corresponding ¯ux ®elds relative to j; in particular, that for q follows from the entropy balance and
Clausius±Duhem constitutive forms

k � hÿ1q;
r � hÿ1r; �4:12�

for the entropy ¯ux and external supply rate densities, h being the absolute temperature.
Turning now to the energy balance, this is based in the dynamic con®gurational context in part on the

forms

lj � PT
j

_nj � RT
j _1j � ET

j vj;

mj � b � _nj � b � _1j � s � vj �4:13�

for mechanical energy ¯ux and external supply rate densities, respectively, with respect to j. Here,

_nj j :� � ��n� �rn�vj� j;
_1j j :� � ��1� �r1�vj� j;

�4:14�

represent the referential velocity of the control region with respect to E, and the rate of change of 1 relative
to j, respectively. Further,

Ej � E � .c
 vj �4:15�
represents the form of the con®gurational or Eshelby stress E relative to j, c being the corresponding
momentum density, and s the corresponding supply-rate density. From Eqs. (4.11), (4.13) and (4.15), then,
one obtains the form

E�j� �
_Z
j

e ÿ
Z

oj
hj � n ÿ

Z
j

sj

�
Z

j
�e ÿ

Z
oj

h � n ÿ
Z

j
s �

Z
oj

vj � �A� .m
 vj�n �
Z

j
vj � d �4:16�

for E�j�, analogous to Eq. (4.8) for the other balance relations, where
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m :� ÿ�rn�T �nÿ �r1�Tlÿ c;

A :� .fuÿ 1
2

�n � �n� �ks ÿ l � �1�g1ÿ �rn�TP ÿ �r1�TRÿ E;

d :� ÿ�rn�Tbÿ �r1�Tbÿ s;
�4:17�

and

u � eÿ hg �4:18�
represents the speci®c free energy. As above for Eq. (4.8), we now adapt the approach of Gurtin (1995) to
the case of total energy balance. To this end, assume that energy balance is independent of the choice of
evolving control region, i.e., that E�j� � E�v� holds for all evolving control regions j; v. In other words, a
change of evolving control region results in no energy production. From Eq. (4.16), this can only be the
case when m, A and d vanish identically, yielding

c � ÿ�rn�T �nÿ �r1�Tl;

E � .fuÿ 1
2

�n � �nÿ l � �1ÿ ksg1ÿ �rn�TP ÿ �r1�TR

s � ÿ�rn�Tbÿ �r1�Tb;

�4:19�

for the speci®c con®gurational momentum, con®gurational stress, and con®guration external supply rate
density. With these results, the total energy balance (4.16) reduces to

E�j� �
Z

j
�e ÿ

Z
oj

h � n ÿ
Z

j
s �4:20�

for all j.
Having obtained the con®gurational ®elds (4.19), we are now in a position to formulate the so-called

con®gurational force balance. In the context of smooth inhomogeneity, this can be obtained from the
corresponding translational invariance of E�j� as given by Eq. (4.20), with the time-dependent translation
involved acting on j. As is well-known from, e.g., the continuum theory of dislocations, loss of transla-
tional invariance in the material is associated with the presence of dislocations and may be characterized,
e.g., by the torsion of the corresponding material connection (e.g., Bilby et al., 1955; Noll, 1967). In the
current case of smooth inhomogeneity, however, such invariance applies. Let

v�j � vj � a �4:21�
represent the corresponding induced transformation of vj for a 2V. Being independent of velocity, the
``internal'' energy ®elds e, q and r are invariant with respect to such a transformation, i.e.,

e� � e; q� � q; r� � r: �4:22�
This is not the case, however, for the ``mechanical'' energy ®elds k, l and m; indeed, Eq. (4.21) induces the
transformations

�k� � �k � �c � a; l� � l � ETa; m� � m� s � a: �4:23�
In addition, it induces that

p� � p� f � a � 0� f � a �4:24�
for the energy internal supply, or production, rate density, f being the corresponding con®gurational
quantity. Requiring E��j� � E�j� then yields the con®gurational momentum or force balance

_Z
j

.c �
Z

j
f �

Z
oj

Ejn �
Z

j
s �4:25�
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relative to j from Eq. (4.20). This generalizes the derivation of this balance given by Cermelli and Fried
(1997) for the standard case on the basis of the invariance of the disspation rate with respect to change of
referential or material observer. Clearly, this balance is in essence of material, rather than spatial, character.
Combining lastly Eq. (4.19) and the localized form of the con®gurational momentum or force balance
(4.25) yields that

f � f1
2

�n � �n� l � �1ÿ ks ÿ ugr.� .f�rl�T�1ÿrks ÿrug � �r�rn��STP � �r�r1��ST
Rÿ �r1�Tp

�4:26�
for the con®gurational momentum internal supply rate density or internal con®gurational ``force'' via Eqs.
(2.3), (3.10c) and (3.19a,b). Clearly, on the basis of Eq. (4.26), then, con®gurational momentum is ``pro-
duced,'' among other things, by an inhomogeneous mass density, speci®c free energy u, and deformation
gradient F � rn, as in the classical case. Additional contributions to f arise in the current context due to
the inhomogeneity of 1, l and ks. These results reduce to those of Gurtin (1995) when inertia, external
supplies and microstructure are neglected, and to those of Cermelli and Fried (1997) when external supplies
and microstructure are neglected. They also reduce to those of Cermelli and Fried (1999) for uniaxial
nematic liquid crystals when external supplies are neglected, when ks is assumed to take the quadratic form
1
2
l2�1 � �1 (l being a lengthscale), and when the microstructure in question is represented by a Euclidean unit

vector ®eld, i.e., the director.

5. Dissipation principle

Although not the main thrust of the current work, the basic thermodynamic results for the class of
materials being considered here following from the Coleman±Noll dissipation principle as based on the
Clausius±Duhem inequality consistent with the current approach are summarized brie¯y in this section for
completeness and comparison with other approaches. To begin, the form of the dissipation rate relevant to
the current constitutive class is obtained via combination of the reduced local energy balance with the
corresponding form of the entropy balance and the constitutive relations (4.12). This results in the local
form

d � Pa � _F � Ra � r _1ÿ pa � _1ÿ hÿ1q � rhÿ .g _hÿ . _u �5:1�
of the dissipation rate density via Eq. (1), the split

P � Pa � Pr;
R � Ra � Rr;
p � pa � pr;

�5:2�

of the constitutive ®elds into active and reactive parts, and Eq. (2), the assumption

Pr � _F � Rr � r _1ÿ pr � _1 � 0 �5:3�
(e.g., Capriz, 1989) that the constraints are ``perfect.'' In other words, they do no work.

Consider now the case of viscous, elastic material behaviour for the class of materials with micro-
structure and moving defects under consideration, something that would apply to, e.g., liquid crystals, or
granular materials. In this case, we have the basic constitutive form

C�h;F; 1;rh;r1; _F; _1� � C�h;F; p�1�;rh; p�1�r1�; _F; p�1 _1� �5:4�
for the dependent constitutive ®elds Pa, Ra, pa, q, g and u; recall that p : W! G represents the projection
of W onto the structure submanifold; further, p�s : W! Tp�s�G represents the induced projection at s 2W.
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For example, in the case of uniaxial nematic liquid crystals, we would have W �V, G � S2, p�a� � a=jaj,
and so p�a � 1ÿ p�a� 
 p�a�, for all non-zero a 2V. One then obtains in the standard way the restrictions

g � ÿu; h;
0 � u;rh;
Ra � .u;r1 � .pT

�1 u; p�1�r1�;
0 � u; _F ;
0 � u; _1 � pT

�1 u; p�1 _1;

�5:5�

on the constitutive parts of the dependent constitutive ®elds from the dissipation inequality dP 0 in the
context of the Coleman±Noll dissipation principle for all thermodynamically admissible processes. Con-
sequently, the speci®c free energy takes on the reduced constitutive form

u�h;F; 1;r1� � u�h;F; p�1�; p��r1��: �5:6�
Likewise, d reduces to

d � fPa ÿ .u; FgFT ÿ �pa � .u; 1� � _1ÿ hÿ1q � rh �5:7�
from Eq. (5.1). In particular, this implies the equilibrium forms

Pae � .u;F ;
pae � ÿ.u;1;

�5:8�

for the constitutive parts of P and p, respectively. Detailed examples of all of these in particular cases, and
in particular that of liquid crystals, can be found in Capriz (1989, parts II and III). Now we turn to the case
that the inhomogeneity of the material with microstructure in question is no longer smooth, i.e., to the case
that this materials contains moving point defects.

6. The case of point defects

The purpose of this section is to touch brie¯y on the extension of the results of the previous section to the
case when the material contains (non-smooth) inhomogeneities which are point-like, e.g., defect cores in
liquid crystals. In a particle, these are represented in the model as isolated singularities in the micro-
structural ®eld 1t :� 1�t; �� : B!W at each t 2 I . On the other hand, continuum ®elds such as the material
velocity _nt : B!V are smooth in all points of B � E by assumption. A complete formulation of this case
depends as well on particular forms for the constitutive relations for the material in question, something
beyond the scope of the current work. As such, attention is restricted here to the basic forms taken by the
balance relations in this case; for a complete formulation along these lines in the case of defective nematic
¯uids, the interested reader is refered to Cermelli and Fried (1999). For simplicity, the formulation in this
section is carried out for the case of a single defect, and all external supply rate densities are neglected. Since
singularities may arise in the remaining ®elds of the formulation, the balance relations must be reformu-
lated to accomodate this possibility.

To this end, let D� � B represent a ball of radius � about the defect core in the reference con®guration B
at some arbitrary time (e.g., t � 0). Further, let d� : I � D� ! B represent the evolution of D� with respect to
the material, such that n d� : I � D� ! E represents that of D� relative to E. In this case, the curve
d0 : I ! B, which we identify with lim�!0 d�, represents the evolution of this core with respect to the ma-
terial. Adapting then, the approaches of Gurtin and Podio-Guidugli (1996) and Cermelli and Fried (1999)
to the current context, balance relations along j containing d� (i.e., d� � j) are ®rst formulated outside the
defect zone, i.e., for j n d�, and then evaluated as � tends to zero. In particular, to this end, consider the
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integral over o�j n d�� of a ¯ux density /. Since o�j n d�� � oj [ od�, this integral can be expressed in the
form Z

o�jnd��
/ � n �

Z
oj

/ � no�jnd�� �
Z

od�

/ � no�jnd�� �
Z

oj
/ � nÿ

Z
od�

/ � n; �6:1�

with

no�jnd��joj � noj; no�jnd��jod�
� ÿnod� : �6:2�

In addition, the transport theorem for j n d� takes the form

_Z
jnd�

w �
Z

jnd�
�w�

Z
o�jnd��

wvjnd� � no�jnd��

�
Z

jnd�
�w�

Z
oj

wvjnd� � no�jnd�� �
Z

od�

wvjnd� � no�jnd��

�
Z

jnd�
�w�

Z
oj

wvj � nÿ
Z

od�

wvd� � n; �6:3�

again from o�j n d�� � oj [ od�, Eq. (6.2) and the results

vjnd� joj � vjjoj; vjnd� jod� � vd� jod� : �6:4�
Combining Eqs. (6.1) and (6.3) yieldsZ

jnd�
�w ÿ

Z
o�jnd��

/ � n �
_Z

jnd�
w ÿ

Z
oj

/j � n �
Z

od�

/d� � n �6:5�

via Eqs. (4.6) and (4.9). Assume next that w is regular in the sense of Gurtin and Podio-Guidugli (1996). In
particular, this implies that w is (i) smooth away from d0 (ii) integrable on B uniformly for t in a compact
interval (iii), t 7! R

jt�R� wt is di�erentiable for all j, and (iv), lim�!0

R
od�

wn exists. In this case, one obtains

_Z
j

w � lim
�!0

Z
jnd�

�w �
Z

oj
wvj � n ÿ lim

�!0

Z
od�

wvd� � n �6:6�

from Eq. (6.3), as well as

_Z
j

w � lim
�!0

Z
jnd�

p �
Z

oj
/j � n ÿ lim

�!0

Z
od�

/d� � n �6:7�

from Eq. (6.5) for a balance relation in the absence of external supplies and the presence of a defect in B. In
particular, assuming that . is continuous, and that _n is regular, Eqs. (6.6) and (6.7) imply in particular the
formsZ

j
.

:

�
Z

oj
.vj � n� mD;

Z
j

.�n

:

�
Z

oj
Pjn� tD; �6:8�

for mass and continuum momentum balance in a region with defect from Eq. (3.19a,b), with

mD :� ÿlim
�!0

Z
od�

.vd� � n; �6:9�

the relative mass ¯ux at the defect, and
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tD :� ÿlim
�!0

Z
od�

Pd�n � ÿlim
�!0

Z
od�

�P � .�n
 vd��n; �6:10�

the stress vector relative to the motion of the defect at the defect. More generally, we have the forms

lim
�!0

_Z
jnd�

.l � lim
�!0

Z
jnd�

p�
Z

oj
Rjn� rD; lim

�!0

_Z
jnd�

.c � lim
�!0

Z
jnd�

f �
Z

oj
Ejn� eD � gD �6:11�

for microstructural and con®guration momentum balances, respectively, in such a region, on the basis of
Eqs. (3.10a±c) and (4.25), respectively, with

rD :� ÿlim
�!0

Z
od�

Rd�n � ÿlim
�!0

Z
od�

�R� .l
 vd��n;

eD :� ÿlim
�!0

Z
od�

Ed�n � ÿlim
�!0

Z
od�

�E � .c
 vd��n: �6:12a; b�

The additional con®gurational ®eld gD appears due to the loss of translational invariance in the material
upon which Eq. (4.25) is based.

The evaluation of the limits appearing in Eqs. (6.9)±(6.11) is contingent on the behaviour of the ®eld
densities appearing in the balance relations of the previous section at the defect. This in turn is crucially
dependent on the particular forms taken by the constitutive relations of the model. In particular, assuming
that the mechanical, non-mechanical and con®gurational forces acting on the defect remain bounded there,
the constitutive ¯uxes Pd� , Rd� , Ed� and qd� satisfy estimates such as

lim
�!0

Z
od�

jPd�nj � O�1�; lim
�!0

Z
od�

�2�pÿ1�jRd�njp � O�1�;

lim
�!0

Z
od�

jEd�nj � O�1�; lim
�!0

Z
od�

jqd� � nj � O�1�; �6:13�

respectively (e.g., Cermelli and Fried (1999), in the case of defective nematic ¯uids). Given physically
reasonable constitutive relations for the ¯uxes, and assuming that any constraint ®elds (e.g., pressure in the
case of incompressibility) are integrable about the defect, one can show via straightforward generalization
of the results of Cermelli and Fried (1999) for the case of defective nematic ¯uids to the current context that
Eq. (6.13) follows from those lim�!0 �1jd� � O��ÿ1� and lim�!0 r1 jd�� O��ÿ1� of the derivatives of 1. In
particular, these latter estimates are based on the physical assumption that the structure ®eld experience no
pathological oscillation near the defect.

Finally, consider the form

lim
�!0

_Z
jnd�

e �
Z

oj
hj � n� hD �6:14�

for the total energy balance via Eq. (4.16), with

hD :� ÿlim
�!0

Z
od�

hd� � n; �6:15�

the total energy ¯ux at the defect core; we also work with

qD :� ÿlim
�!0

Z
od�

qd� � n �6:16�

in what follows. On the basis of the estimates (6.13), both of these exist. To deal with the singularity of the
microstructural ®eld 1 at the defect core in the context of hD, assume that there exists a ®eld v : I � S2 !W
on the unit sphere S2 such that
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v�t; n� :� lim
�!0
f��1� �r1�vj��t; d0�t� � �n�g �6:17�

holds. On this basis, v�t; n� represents, in an asymptotic sense, the rate at which the microstructural ®eld 1 is
changing at the defect in the direction n 2 S2 at time t 2 I . As with the estimates (6.13), the existence of v
can be derived on the basis of the speci®c, physically reasonable constitutive relations for these ¯uxes when
one assumes in particular that 1 does not experience pathological oscillations near the defect. Consequently,
then, hD takes the form

hD � ÿqD � _d0 � tD � � _d0 ÿ �nD� � eD �
Z

S2

v � uD �6:18�

via the results 13

_d0 � tD :� ÿlim
�!0

Z
od�

vd� � Pd�n;Z
S2

v � uD :� ÿlim
�!0

Z
od�

��1� �r1�vd� � � Rd�n; �6:19�

� _d0 ÿ �nD� � eD :� ÿlim
�!0

Z
od�

�vd� ÿ �n� � Ed�n;

where

�nD�t� :� �nt�d0�t�� � �n�t; d0�t�� �6:20�
represents the continuum velocity at the defect core, and

uD�t; n� :� ÿlim
�!0
f�2�Rd�n��t; d0�t� � �n�g; �6:21�

the microstructural stress ``vector'' at the defect core in the direction n 2 S2 away from the defect core at
time t 2 I . With the help of the regularity of �n and the corresponding result

lim
�!0

Z
od�

1
2
.��n � �n�n � 0; �6:22�

one obtains the alternative form

hD � ÿqD � �nD � tD � � _d0 ÿ �nD� � estr
D �

Z
S2

v � uD �6:23�

of hD via Eqs. (4.11) and (4.13) in terms of the microstructural part

Estr
d�

:� .fuÿ l � �1ÿ ksg1ÿ �r1�TRÿ �r1�T.l
 vd� �6:24�
of Ed� , where

estr
D :� ÿlim

�!0

Z
od�

Estr
d�

n �6:25�

is de®ned analogous to Eq. (6.12b).
This completes the basic formulation of the balance relations in the presence of a point defect. Further,

more detailed result can be obtained in the context of speci®c constitutive models for the microstructure in
question, and are beyond the scope of this work. For further details on the application to the crack

13 These follow from the integrability assumptions (6.13) and Lemma A1 of Cermelli and Fried (1999).
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propagation, the reader is refered to Gurtin and Podio-Guidugli (1996), and for the case of defective ne-
matic ¯uids to the work of Cermelli and Fried (1999).
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